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Abstract

Criteria for prediction of multinomial responses are examined in terms of estimation bias.

Logarithmic penalty and least squares are quite similar in behavior but quite different from

maximum probability. The differences ultimately reflect deficiencies in the behavior of the

criterion of maximum probability.

Key words: penalty function, entropy, concentration, misclassification rate, large-sample

approximation
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Introduction

In statistical applications, it is common to predict a polytomous variable Y by use

of one or more continuous or discrete variables. Such applications are encountered in the

study of educational testing. A response to a multiple-choice item is a polytomous variable;

commonly used holistic scores in grading of essays are polytomous, as are many validity

criteria such as whether graduation. Polytomous responses may or may not have obvious

associated numerical values. A simple numerical description is not appropriate for the

response to a multiple choice question, for there may be a correct response, there may be

three different incorrect responses, no response at all may exist, or there may be an invalid

response in which more than one choice is marked. On the other hand, a holistic essay

score may be a number from 1 to 6, with a higher number indicating a better response.

Especially in cases in which no appropriate numerical values correspond to the values of Y ,

there are basic questions concerning the meaning of a prediction of Y . Given a definition

of a prediction of Y , there is then the problem of criteria for evaluation of the prediction.

These problems have been treated extensively in the statistical literature (Savage, 1971;

Goodman & Kruskal, 1954; Haberman, 1982a; Haberman, 1982b; Gilula & Haberman,

1995b); nonetheless, it is not often appreciated that the appropriate strategy for prediction

depends quite strongly on the criterion used to assess the quality of the prediction. In

Section 1, prediction criteria based on penalty functions are developed (Haberman, 1982a;

Haberman, 1982b), and the criteria based on squared error penalty, logarithmic probability

penalty, and misclassification penalty are introduced. In Section 2, samples are used to

develop probability predictions (Haberman, 1982a; Haberman, 1982b; Gilula & Haberman,

1995b). In Section 3, some large-sample results are used in a simple case to show that

criteria based on misclassification penalty are much different in nature than criteria based

on squared error penalty or on logarithmic penalty. This comparison appears to be new.

Section 4 examines consequences of the results derived. The most important conclusion is

that use of classification error rates is a questionable approach despite its intuitive appeal.
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Table 1.

Joint Probabilities of Human and Machine Scores

Machine Human score

score 1 2 3 4 5 6 Total

1 0.0080 0.0120 0.0010 0.0010 0.0005 0.0005 0.0230

2 0.0240 0.0440 0.0760 0.0160 0.0010 0.0010 0.1620

3 0.0040 0.0440 0.1000 0.0760 0.0040 0.0010 0.2290

4 0.0010 0.0080 0.0960 0.1760 0.0680 0.0010 0.3500

5 0.0010 0.0040 0.0040 0.0400 0.0800 0.0480 0.1770

6 0.0005 0.0005 0.0010 0.0010 0.0240 0.0320 0.0590

Total 0.0385 0.1125 0.2780 0.3100 0.1775 0.0835 1.0000

1 Penalty Functions

To examine the problem of prediction of polytomous variables, consider a polytomous

response random variable Y with values in a finite set S = {yi : 1 ≤ i ≤ s} with s elements

and an explanatory random variable X with values in some space T . For instance, in the

case of a holistic essay score from 1 to 6, S is just the set of integers from 1 to 6 and each yi

is the integer i. The variable Y might be the final holistic score obtained from human raters

for a randomly selected essay for a specific prompt, and X might be the machine-derived

holistic score for the same essay. For illustrative purposes, a joint distribution of X and

Y is provided in Table 1. These probabilities are comparable with reported sample data

(Feng et al., 2003). In this case, S and T are the same. Let pY ·X(y|x) be the conditional

probability that Y = y given that X = x for x in T and y in S, and let pY (y), be the

marginal probability that Y = y. In the essay example, pY ·X(3|3) = 0.1000/0.2290 = 0.4367

is the conditional probability of a human score of 3 given a machine score of 3, and

pY (3) = 0.2780 is the marginal probability of a human score of 3. The conditional

distribution of Y given X is fully described by the conditional probability vectors pY ·X(x)

with coordinates pY ·X(yi|x) for integers i from 1 to s. Similarly, the marginal distribution

of Y is completely described by the s-dimensional vector pY with coordinates pY (yi) for
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integers i from 1 to s. In this paper, basic operations on s-dimensional vectors will be

common. If c is an s-dimensional vector with coordinates ci for 1 ≤ i ≤ s, then the squared

Euclidean norm of c is defined by

|c|22 =
s∑

i=1

c2
i ,

and the maximum norm of c is defined by

|c|∞ = max
1≤i≤s

|ci|.

The tie function t(c) is the number of members of the set A(c) of integers i from 1 to s

such that |ci| = |c|∞. At times, infinite quantities must be considered. The convention is

adopted that log 0 = −∞ and 0∞ = 0. The variance of a random variable V is denoted by

σ2(V ).

To examine sampling, let Xh and Yh, 1 ≤ h ≤ n, be sampled random variables such

that each pair (Xh, Yh), 1 ≤ i ≤ n, is mutually independent, independent of (X, Y ), and

distributed as (X, Y ). Thus in the essay example, there would be n observed essays. For

essay h, Xh would be the machine-derived holistic score, and Yh would be the human essay

score.

The basic problem under study is prediction of the response variable Y by the

explanatory variable X. As previously noted, because Y is polytomous and the set of

possible values S may not have a useful numerical representation, it is not necessarily

appropriate to approximate Y by a single numerical value. On the other hand, Y always

has an s-dimensional vector representation Z with coordinates Zi for 1 ≤ i ≤ s. Let δi be

the s-dimensional vector with coordinates δij, 1 ≤ j ≤ q, such that δij = 1 if i = j, and

δij = 0 if i 6= j. If Y = yi, then Z = δi. Obviously Y determines Z. Given Z, Y is identified

as the value yi such that Zi = 1. For each integer i, the coordinate Zi is always nonnegative,

and the sum
∑s

i=1 Zi = 1. Let a superscript T denote a transpose. Then in the case of

holistic scoring, Z is the six-dimensional vector (0, 0, 1, 0, 0, 0)T if the holistic score Y is 3.

The unconditional expected value of Z is pY , and pY ·X(x) is the conditional expected value

of Z given X = x. Naturally, pY (y) and pY ·X(y|x) are both nonnegative, and

s∑
i=1

pY (yi) =
s∑

i=1

pY ·X(yi|x) = 1.
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Thus the observation Z and the probability vectors pY and pY ·X(x) are all members of

the unit simplex Q of s-dimensional vectors a with nonnegative coordinates ai and sum∑s
i=1 ai = 1, and Z is always a vertex of Q. In this paper, probability predictors are studied.

Here a probability predictor q(X) is a random vector such that q is a function from the

space T of values of X to the unit simplex Q (Savage, 1971; Haberman, 1982a; Haberman,

1982b). In this fashion, pY ·X(X) is a probability predictor, as is the constant predictor

pY C equal to pY for any possible value of X. One may regard a probability predictor as

an approximation of Z. Because the original observation Y is a one-to-one function of the

vector Z, a probability predictor also provides a type of prediction of Y .

To study probability prediction, accuracy of prediction must be considered. Several

common approaches exist that can be described within a common framework (Savage, 1971;

Haberman, 1982a; Haberman, 1982b) based on a nonnegative and possibly infinite penalty

function L designed to measure the discrepancy between the observed vector Z and the

probability predictor q(X). For any value y of Y and any member a of the unit simplex, L

assumes a value L(y, a). The observed penalty is L(y,q(x)) if Y = y and X = x. In this

report, the three penalty functions considered are the squared error penalty function LC

defined by

LC(yi, a) = |δi − a|22,

with the logarithmic penalty function LH defined by

LH(yi, a) = − log ai,

and the misclassification penalty function LM defined by

LM(yi, a) =

 1, i 6∈ A(a),

1− 1/t(a), i ∈ A(a).

Thus the squared error function LC(Y, a) is the squared Euclidean distance between the

observed vector Z and the probability prediction a. If Y = yi, then the logarithmic

probability penalty LH(Y, a) = − log ai is minus the logarithm of the probability ai

predicted for the observed value yi of Y . The misclassification rate penalty LM(Y, a) is

based on the idea of classification of Y as the value yi with the highest probability ai. In
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this fashion, LM(Y, a) is 1 if the observed value yi of Y has assigned probability ai less than

the maximum probability |a|∞ assigned to a value of Y , so that Y is not classified correctly

by the classification rule. If the assigned probability ai for Y = yi is larger than any other

probability aj assigned to Y = yj 6= yi, then LM(Y, a) is 0, for Y is classified correctly by

the classification rule. The case of t(a) > 1 and i in A(a) is a bit more complicated. In

this instance, classification is ambiguous, so that Y is randomly classified with probability

1/t(a) as yj if j is in A(a). For Y = yi, the probability of incorrect classification is then

1− 1/t(a).

As an example, consider the case of human essay scoring. Let the actual score be 3,

and let a probability predictor assign probability 0.1 to scores 1 and 6, probability 0.15

to scores 2 and 5, and probability 0.25 to scores 3 and 4. Here the maximum predicted

probability 0.25 is assigned to both scores 3 and 4. The squared error penalty is

(0− 0.1)2 + (0− 0.15)2 + (1− 0.25)2 + (0− 0.25)2 + (0− 0.15)2 + (0− 0.1)2 = 0.69,

the logarithmic penalty is

− log(0.25) = 1.386,

and the misclassification rate penalty is

1− 1/2 = 0.5.

The penalty function L satisfies the regularity conditions that the penalty L(Y, a) is

finite if the probability ai assigned to the outcome yi is positive and if Y = yi. It is also

assumed that the penalty L(Y, a) is 0 if, and only if, the probability ai assigned to the

outcome yi is 1 and Y = yi, so that a = Z. These requirements hold if L is LC , LH , or LM .

In addition, LC never exceeds 2, and LM never exceeds 1.

The fundamental assumption is that the smallest expected penalty from use of a

constant prediction function is observed if the prediction function is pY C . For members a

and b of the unit simplex, let

D∗(a,b) =
s∑

i=1

aiL(yi,b)
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be the expected penalty E(L(Y,q(X))) if p = a and if q(x) is b for all x in T . Obviously

the expected penalty D∗(a,b) is nonnegative. If bi is positive whenever ai is positive, then

D ∗ (a,b) is finite. Unless a = b = δi for some possible value yi of the dependent variable

Y , D∗(a,b) is positive. For a given a, it is assumed that the expected penalty D(a,b) is

smallest if b = a, so that

D(a) = D∗(a, a) ≤ D∗(a,b),

and D(a) is nonnegative and finite. These requirements hold if the penalty function L is LC ,

LH , or LM (Haberman, 1982a; Haberman, 1982b). Rather remarkably, these requirements

provide a justification for use of logarithmic probability. If the number s of possible values

of Y is at least 3, then a penalty function L that satisfies all regularity conditions and

satisfies the condition that L(yi, a) is determined by ai for each i from 1 to s must be equal

to dLH for some positive real d (Savage, 1971).

The function D is used to define basic measures of dispersion and association

(Haberman, 1982a; Haberman, 1982b). The unconditional dispersion measure JY is defined

to be the expected penalty D(pY ) = E(L(Y,pY C)) from probability prediction of Y by the

constant predictor pY C . This measure is nonnegative and finite, and JY is 0 if, and only if,

pY (y) = 1 for some possible value y of Y , so that Y = y and Z = pY with probability 1. In

this latter case, Y is said to be essentially constant.

The dispersion measures associated with squared error penalty and logarithmic penalty

are commonly used. In the case of the squared error function LC , D(p) is the Gini

concentration

CY = 1−
∑
y∈S

pY (y)]2

(Gini, 1912). It should be noted that CY is simply the probability that the sample variables

Y1 and Y2 satisfy Y1 6= Y2. Thus in the case of essay scoring, CY is the probability that

two randomly chosen essays have the same human holistic score. In the case of log penalty,

D(pY ) is the Shannon entropy

HY = −
∑
y∈S

pY (y) log pY (y)
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(Shannon, 1948). For misclassification rate, D(pY ) is the minimum classification rate error

MY = 1−max
y∈S

pY (y)

obtained if Y is classified as having a constant value y without regard to X. Because∑
y∈S

[pY (y)]2 ≤
[
max
y∈S

pY (y)

]∑
y∈S

pY (y) = max
y∈S

pY (y),

with equality only if some pY (y) is 1, the minimum classification rate error MY never

exceeds the concentration CY , CY ≤ 1− s−1, and MY < CY if Y is not essentially constant

(Gilula & Haberman, 1995a; Goodman & Kruskal, 1954). Because the logarithm of a

positive real number d never exceeds d− 1, and log(d) only equals d− 1 if d = 1,

HY ≥
∑
y∈S

pY (y)[1− pY (y)] = CY ,

with equality only if Y is essentially constant. In addition, HY ≤ log(s) (Gilula &

Haberman, 1995a). In the case of the probabilities for essay scores in Table 1, the best

strategy for classification is to classify all essays by the score 4. The misclassification rate

MY is then 1 − 0.3100 = 0.6900. As expected, the concentration CY = 0.7740 exceeds

MY = 0.6900 and CY is less than 1− 6−1 = 0.8333. In addition, the entropy HY = 1.6043

exceeds the concentration CY and is less than log(6) = 1.7918.

The conditional dispersion measure JY ·X(x) of Y given X = x is the dispersion

D(pY ·X(x)). The conditional dispersion measure JY ·X is the expected penalty

E(JY ·X(X)) = E(L(Y,pY ·X(X)))

from use of the conditional probability prediction pY ·X(X) for Y . This measure is the

smallest possible expected penalty E(L(Y,q(X))) for prediction of Y by a probability

predictor q(X). Because pY C is a probability predictor, 0 ≤ JY ·X ≤ JY . The conditional

dispersion JY ·X is 0 if, and only if, for some function c from T to S, Y = c(X) with

probability 1. Thus Y may be said to be essentially determined by X. At the other

extreme, the conditional and unconditional dispersions JY and JY ·X are the same if X and

Y are independent, so that pY ·X(X) = pY with probability 1.
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If the squared error penalty function is used, then the conditional dispersion JY ·X(x)

given X = x is the conditional concentration

CY ·X(x) = 1−
∑
y∈S

[pY ·X(y|x)]2

of Y given X = x, and the conditional concentration of Y given X is

CY ·X = E(CY ·X(X)) = 1−
∑
y∈S

E([p(y|X)]2).

Thus CY ·X is the conditional probability that Y1 6= Y2 given that X1 = X2. If the

logarithmic penalty is employed, then JY ·X(x) is the conditional entropy

CY ·X(x) = −
∑
y∈S

pY ·X(y|x) log pY ·X(y|x)

of Y given X = x, and

HY ·X = E(HY ·X(X)) = −
∑
y∈S

E(pY ·X(y|X) log pY ·X(y|X))

is the conditional entropy of Y given X. For misclassification rate, JY ·X(x) is the minimum

classification error rate

MY ·X(x) = 1−max
y∈S

pY ·X(y|x)

for Y given X = x and JY ·X is the minimum classification error rate

MY ·X = E(MY ·X(X)) = 1− E(max
y∈S

pY ·X(y|X))

from classification of Y by use of a function of X. As in the unconditional case,

MY ·X(x) ≤ CY ·X(x) ≤ HY ·X(x), and MY ·X ≤ CY ·X ≤ HY ·X . For example, in the case of

essay scoring, CY ·X = 0.6266 exceeds MY ·X = 0.524 and is less than HY ·X = 1.1851.

If the expected penalty function D is strictly concave, then the conditional dispersion

measure JY ·X is equal to the unconditional dispersion measure JY only if X and Y are

independent. In the case of squared error penalty and logarithmic penalty, the function D

is strictly concave. Thus CY ·X = CY or HY ·X = HY implies independence of the dependent

variable Y and the independent variable X. For misclassification rate, D is not strictly

concave, and the conditional classification error rate MY ·X may equal the unconditional
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classification error rate MY without independence of X and Y . For an extreme case, let Y

and X have possible values 1 and 2, so that s is 2 and S and T are the integers 1 and 2. Let

the probability pX(x) that X = x be 0.5 for x equal 1 or 2, let pY ·X(1|1) = 1, pY ·X(2|1) = 0,

and pY ·X(1|2) = pY ·X(2|2) = 0.5, so that pY (1) = 0.75 and pY (2) = 0.25. Obviously X

and Y are dependent; however, MY ·X = MY = 0.25. In contrast, CY ·X = 0.25 is less than

CY = 0.375, and HY ·X = 0.3466 is less than 0.5623.

The dispersion measures described in this section are commonly used to construct

analogues of the coefficient of determination of regression analysis to describe the strength

of the relationship between Y and X. This practice is particularly well known if T is finite,

so that X is polytomous (Goodman & Kruskal, 1954). If JY > 0, then

ρY ·X = 1− JY ·X

JY

measures the proportional reduction in loss from use of X as a predictor of Y . Given the

inequality constraints on the conditional dispersion JY ·X and the unconditional dispersion

JY , it follows that 0 ≤ ρY ·X ≤ 1, with ρY ·X = 1 if, and only if, Y is essentially determined

by X. If X and Y are independent, then ρY ·X is 0. If D is strictly concave, then ρY ·X is

only 0 if X and Y are independent.

The Goodman and Kruskal λ coefficient λY ·X is 1 − MY ·X/MY , and the Goodman

and Kruskal τ coefficient τY ·X is 1 − CY ·X/CY (Goodman & Kruskal, 1954). The

Theil uncertainty coefficient UY ·X is 1 − HY ·X/HY (Theil, 1971). As evident from

the relationships between independence and equality of conditional and unconditional

dispersion measures, τY ·X and UY ·X are only 0 if X and Y are independent. In contrast,

λY ·X may be 0 for dependent X and Y . In the example used previously to illustrate

the possibility of dependence with equal conditional and unconditional classification

error rates, λY ·X = 0, τY ·X = 0.3515, and UY ·X = 0.3837. Note that τY ·X and UY ·X

are relatively similar, and they both suggest that an appreciable reduction in error is

achieved by use of X in prediction of Y . On the other hand, λY ·X suggests that X has no

value as a predictor of Y . In the example of essay scoring, differences in results are less

dramatic, for squared error penalty leads to τY ·X = 1− 0.6266/0.7740 = 0.1904, logarithmic

probability penalty leads to UY ·X = 1 − 1.1851/1.6043 = 0.2613, and misclassification
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error leads to λY ·X = 1 − 0.5240/0.6900 = 0.2406. In all cases, the indication is that the

machine-generated essay score permits a modest improvement in probability prediction

relative to the prediction achievable without the machine-generated score.

2 Sampling and Probability Prediction

A probability prediction of Y given X may be developed by use of sample observations.

For some simple examples, for y in S and x in T , let fY (y) be the number of integers h with

Yh = y, let fY X(y, x) be the number of integers h with Yh = y and Xh = x, and let fX(x) be

the number of integers h with Xh = x. One might consider the probability predictor p̂Y C

with coordinate i equal to p̂Y (yi) = n−1fY (yi), the fraction of the integers h with Yh = yi.

For a slightly more complex case, consider p̂Y ·X , where p̂Y ·X(x) is p̂Y C if fX(x) = 0 and

p̂Y ·X(x) has coordinate i equal to the relative frequency

p̂Y ·X(yi|x) = fY X(yi, x)/fX(x)

if fX(x) > 0. The functions p̂Y ·X and p̂Y C have the disadvantage that they can provide

probability predictors that have coordinates equal to 0. As a consequence, alternatives of

interest are p̂Y Cα and p̂Y ·Xα, where α is an s-dimensional vectors with positive coordinates

αi with sum α+ =
∑s

i=1 αi, p̂Y Cα(x) has coordinate i equal to

p̂Y Cα(yi|x) =
fY (yi) + αi

n + α+

for any x in T and p̂Y ·Xα(x) has coordinate i equal to

p̂Y ·Xα(yi|x) =


fY (yi)+αi

n+α+
, fX(x) = 0,

f(yi,x)+αi

fX(x)+α+
, fX(x) > 0.

It is possible to consider αi = 0.5. This choice is consistent with common estimation

procedures for logarithms of ratios of probabilities (Anscombe, 1956).

In general, a function q̂ of the observations Xh and Yh, 1 ≤ h ≤ n, is considered.

For any given value of the Xh and Yh, q̂ is a probability predictor with value q̂(x) at

x in T , and q̂(x) has coordinate i equal to q̂(yi|x). The function q̂(X) equal to q̂(x) if

X = x is assumed to be an s-dimensional random vector. The function q̂ may be termed

a sample probability predictor. It is easily seen that p̂Y C , p̂Y Cα, p̂Y ·X , and p̂Y ·Xα are all
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sample probability predictors. Many more complex sample probability predictors may be

constructed by use of log-linear models (Gilula & Haberman, 1995b).

To assess the value of the sample probability predictor q̂, the expected penalty is

evaluated. The penalty under study is a random variable L(Y, q̂(X)) that depends on the

observations X and Y under study and on the sampled variables Xh and Yh. To find the

expected penalty efficiently requires several arguments involving conditional expectations.

Given X = x and given the observed Xh and Yh, the conditional expected value of the

penalty L(Y, q̂(X)) from probability prediction of Y from q̂ is the random variable

D∗(pY ·X(x), q̂(x)) ≥ JY ·X(x).

Let

F (q̂|x) = D∗(pY ·X(x), q̂(x))− JY ·X(x) ≥ 0

denote the conditional excess expected penalty given X = x and the Xh and Yh. Then

F (q̂|x) =
∑
y∈S

pY ·X(y|x)[L(y, q̂(x))− L(y,pY ·X(x))]

(Haberman, 1982a). Given X = x, the conditional expected excess penalty is

∆(q̂|x) = E(F (q̂|x)),

and the expected excess penalty is

B(q̂) = E(∆(q̂|X)).

The expected penalty is then

I(q̂) = B(q̂) + JY ·X .

In the case of squared error, F (q̂|x) is

FC(q̂|x) =
∑
y∈S

[q̂(y|x)− pY ·X(y|x)]2,

and ∆(q̂|x) is

∆C(q̂|x) =
∑
y∈S

{σ2(q̂(y|x)) + [E(q̂(y|x)− pY ·X(y|x)]2}
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(Haberman, 1982a). The expected excess penalty is then

BC(q̂) = E(∆C(q̂|X)),

and the expected penalty is

IC(q̂) = BC(q̂) + CY ·X .

In the case of the logarithmic probability penalty, F (q̂|x) is

FH(q̂|x) =
∑
y∈S

pY ·X(y|x) log

[
pY ·X(y|x)

q̂(y|x)

]
(Haberman, 1982a), so that FH(q̂|x) is ∞ if q̂(y|x) is 0 for some y such that pY ·X(y|x) > 0.

The expected excess penalty B(q̂) is then

BH(q̂) = E(∆H(q̂|X)),

and the expected penalty is

IH(q̂) = BH(q̂) + HY ·X .

Both BH(q̂) and IH(q̂) may be infinite.

For misclassification rate, F (q̂|x) becomes FM(q̂|x), where FM(q̂|x) is the difference

between |pY ·X(x)|∞ and the average of the pY ·X(y|x) for y in S such that q̂(y|x) = |q(x)|∞.

The conditional expected excess penalty given X = x becomes

∆M(q̂|x) = E(FM(q̂|x)),

the expected excess penalty becomes

BM(q̂) = E(∆M(q̂|X)),

and the expected penalty is

IM(q̂) = BM(q̂) + MY ·X .

3 Penalty Criteria in Large Samples

The large-sample behavior of the expected excess penalty is very different for

misclassification rate penalty than for squared error penalty or for logarithmic probability

12



penalty. As evident in Section 2, because the logarithmic probability penalty can be

infinite, some differences exist for results for logarithmic penalty functions and squared

error penalty functions. In the cases of squared error penalty and logarithmic probability

penalty, large-sample properties have been explored previously in the case of log-linear

models (Haberman, 1982a; Gilula & Haberman, 1995b); however, a more precise and

simpler discussion of differences is provided by examination of the case of p̂Y ·X and p̂Y ·Xα

for T , the range of X, a finite set with v elements, and for the probability pX(x) that X = x

positive for each x in T . To facilitate comparison of results for different choices of X, it is

helpful to use the minimum expected value

g = n min
x∈T

pX(x)

of the counts fX(x). In the case of squared error penalty, BC(p̂Y ·X) and BC(p̂Y ·Xα) are

both of order g−1. In the case of logarithmic probability penalty, BH(p̂Y ·X) is infinite, and

BH(p̂Y ·Xα) is of order g−1. In the case of misclassification rate penalty, BM(p̂Y ·X) and

BM(p̂Y ·Xα) are equal and are typically of order exp(−βg) for some real β > 0.

To verify these claims, a few basic results concerning the distribution of the frequency

counts fX(x) should be noted. The probability that fX(x) = 0 is r(x) = [1− pX(x)]n. Note

that log(d) < d− 1 if d is a positive real number other than 1. It follows that r(x) is equal

to

exp{n log[1− pX(x)]} < exp[−npX(x)] ≤ exp(−g),

so that convergence of this probability to 0 is exponentially fast for each x in T . It is also

helpful to note that

m(x) = E(1/fX(x)|fX(x) > 0)

is bounded below by

u1(x) =
1− k(x)

(n + 1)pX(x)

for

k(x) =
npX(x)r(x)

1− r(x)

and bounded above by

u1(x) + 3u2(x)

13



for

u2(x) =
u1(x)− k(x)/2

(n + 2)pX(x)

(Stephan, 1945). Thus npX(x)m(x) differs from 1 by a term of order g−1.

Given these preliminaries, each penalty function requires separate attention.

3.1 Squared Error

In the case of squared error penalty, both BC(p̂Y ·X) and BC(p̂Y ·Xα) are well

approximated by

n−1
∑
x∈T

CY ·X(x) ≤ g−1CY ·X .

Thus the estimated excess penalty is of order g−1. Although the details of verification of

this claim are a bit complicated, the basic principles are readily summarized.

The simplest case to consider is p̂Y ·X . In this instance, given that fX(x) > 0, the

conditional expectation of p̂Y ·X(y|x) is pY ·X(y|x). Given that fX(x) = 0, the conditional

expectation of p̂Y ·X(y|x) is

P (Y = y|X 6= x) =
pY (y)− pY (y|X = x)pX(x)

1− pX(x)
.

It follows that

E(p̂Y ·X(y|x)) = [1− r(x)]pY ·X(y|x) + r(x)P (Y = y|X 6= x)

differs from pY ·X(y|x) by a term of order exp(−g). In like fashion, the conditional variance

of p̂Y ·X(y|x) given fX(x) > 0 is

pY ·X(y|x)[1− pY ·X(y|x)]/fX(x),

and the conditional variance of p̂Y ·X(y|x) given fX(0) = 0 is

P (Y = y|X 6= x)[1− P (Y = y|X 6= x)]/n.

It follows that

npX(x)σ2(p̂Y ·X(y|x))− pY ·X(y|x)[1− pY ·X(y|x)]
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is of order g−1. Because ∑
y∈S

pY ·X(y|x)[1− pY ·X(y|x)] = CY ·X(x),

it follows that

BC(p̂Y ·X)− n−1
∑
x∈T

CY ·X(x)

is of order g−2. Because CY ·X(x) cannot exceed 1− s−1 and g ≤ n/v, BC(p̂Y ·X) is of order

g−1. Slight changes in arguments can be used to show that

BC(p̂Y ·Xα)− n−1
∑
x∈T

CY ·X(x)

is also of order g−2. Note that CY ·X(x) is positive if distinct y and y′ exist such that the

conditional probabilities pY ·X(y|x) and pY ·X(y′|x) are both positive.

For the probabilities in Table 1, if n = 1, 000, then g is 23, and the expected excess

squared error penalty is about 0.00378. For n = 10, 000, g is 230, and the expected excess

is about 0.000378.

3.2 Logarithmic Probability

In the case of logarithmic probability, p̂Y ·X(y|x) is 0 with positive probability for a case

with pY ·X(y|x) = 0 unless some function c on T exists for which Y = c(X). In this trivial

case, the expected excess penalty BH(p̂Y ·X) is 0. Otherwise, BH(p̂Y ·X) is infinite, although

it should be noted that, for any positive real d, the expected minimum of d and FH(p̂Y ·X)

approaches v(s − 1)/n whenever each conditional probability pY ·X(y|x) is positive (Gilula

& Haberman, 1995b).

More interesting results are available if p̂Y ·Xα is considered. It is simplest to confine

attention to the case in which pY ·X(y|x) is always positive. To facilitate comparison of

results for different choices of X, the condition may be used that a positive real d exists

such that pY ·X(y|x) ≥ d for all y and x. The basic result obtained is quite simple, for the

expected excess penalty BH(p̂Y ·Xα) differs from v(s − 1)/n by a term of order g−2. This

result is predictable given current literature (Gilula & Haberman, 1995b). It should be

noted that, for sufficiently large sample sizes, BH(p̂Y ·Xα) is at least s times larger than

BC(p̂Y ·Xα).
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The argument required to prove results for the logarithmic penalty is rather similar to

that used for squared error; however, a bit more effort is required because log p̂Y ·Xα(yi|x)

is a nonlinear function of p̂Y ·X(yi|x) that may be as small as log(αi/(n + α+)). Details are

not considered here; however, it is worth noting that two basic principles are involved. For

p̂Y ·X(y|x) > 0, the logarithms log[p̂Y ·Xα(y|x)/pY ·X(y|x)] are approximated by

p̂Y ·Xα(y|x)− pY ·X(y|x)

pY ·X(y|x)

by use of the elementary expansion

log(b/a) =
b− a

c

for b and a real and positive and c a real number between b and a. To place limits on the

probability that |p̂Y ·Xα(y|x) − pY ·X(y|x)| exceeds some small quantity δ, large deviation

theory is used (Bahadur & Ranga Rao, 1960). Let a and b be positive real numbers less

than 1, and let

d = a log
(a

b

)
+ (1− a) log

(
1− a

1− b

)
.

Let f be a binomial random variable with sample size k > 0 and probability b. If a > b,

then the probability that f/k > a does not exceed exp(−kd). If a < b, then the probability

that f/k < a does not exceed exp(−kd).

For n = 1, 000 and for probabilities defined as in Table 1, the expected excess

logarithmic probability penalty is about 0.03. If n is 10,000, then the expected excess

penalty is reduced to 0.003. As expected, these values are somewhat larger than the

corresponding ones for squared error penalty.

3.3 Misclassification Penalty

For misclassification penalty, BM(p̂Y ·X) = BM(p̂Y ·Xα) because p̂Y ·X(y|x) > p̂Y ·X(y′|x)

if, and only if, p̂Y ·Xα(y|x) > p̂Y ·Xα(y′|x) for y and y′ in S and x in T . In addition,

BM(p̂Y ·X) is trivially 0 if Y satisfies the equiprobability condition that pY ·X(y|x) = s−1

for all y and x. In other cases, large-deviation theory may be applied to obtain an upper

bound on BM(p̂Y ·X). One finds that BM(p̂Y ·X) is of order exp(−βg) for some β > 0. As

will be evident from examination of Table 1, this exponential rate of convergence to 0 does

not necessarily imply that BM(p̂Y ·X) is negligible even for relatively large samples.
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To examine the required large-deviation theory, let p(y, x) be the probability that

X = x and Y = y, so that p(y, x) = pX(x)pY ·X(y|x). Let pY ·X(y|x) > pY ·X(y′|x), and let

γ(y, y′|x) = {[pY ·X(y|x)]1/2 − [pY ·X(y′|x)]1/2}2.

For real nonnegative a and b, a > b,

(a1/2 − b1/2)(a1/2 + b1/2) = a− b.

It follows that

γ(y, y′|x) >
1

4
[pY ·X(y|x)− pY ·X(y′|x)]2.

If

m(y, y′|x) = 1− p(y, x)− p(y′, x) + 2[p(y, x)p(y′, x)]1/2,

υ(y, y′|x) = p(y, x) + p(y′, x)− [p(y, x)− p(y′, x)]2,

and

ζ(y, y′|x) =

 2[1− p(y′, x)/p(y, x)]−1, s = 2,

{1− [p(y′, x)/p(y, x)]1/2}−1, s > 1,

then

m(y, y′|x) = 1− pX(x)γ(y, y′|x) < 1,

the probability ξ(y, y′|x) that fY X(y′, x) ≥ fY X(y, x) does not exceed [m(y, y′|x)]n, and

ξ(y, y′|x) is well approximated by

ξ0(y, y′|x) =
[m(y, y′|x)]n

[2πnυ(y, y′|x)]1/2ζ(y, y′|x)

in the sense that
ξ(y, y′|x)− ξ0(y, y′|x)

ξ(y, y′|x)

is of order g−1 (Bahadur & Ranga Rao, 1960). Use of the inequality d − 1 < log(d) for

positive real d 6= 1 implies that

[m(y, y′|x)]n < exp[−npX(x)γ(y, y′|x)].

In addition, for any x in T ,

FM(p̂Y ·X |x) ≤
∑
y∈S

[|pY ·X |∞ − pY ·X(y|x)]u(y|x),
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where u(y|x) is 1 if p̂Y ·X(y|x) ≥ p̂Y ·X(yi|x) for each i in A(pY ·X(x)) and u(y|x) is 0

otherwise. Let pY ·X(c(x)|x) = |pY ·X(x)|∞. It follows that

BM(p̂Y ·X) ≤
∑
x∈T

pX(x)
∑
y∈S

[|pY ·X(x)|∞ − pY ·X(y|x)][r(x) + ξ(c(x), y|x)]]}.

Thus a real τ > 0 and β > 0 exists such that BM(p̂Y ·X) is less than τ exp(−βg) for g

sufficiently large. The size of β is at least one quarter the square of the smallest difference

pY ·X(c(x)|x) − pY ·X(yi|x) for i not in A(pY ·X(x) and x in T , and τ can be selected not

to exceed 2(s − 1). The bound is quite generous, as is evident from the more accurate

approximation to ξ(y, y′|x).

For the probabilities in Table 1, if n = 1, 000, then use of upper bounds shows that

the expected excess penalty does not exceed 0.0129, but the refined approximation yields

0.00434. For n = 10, 000, the upper bound is 0.0000959, and the refined approximation is

0.0000140. Note that the value for n = 1, 000 is quite comparable to that for squared error,

but the expected excess for n = 10, 000 is very small. In general, the exponential rate of the

convergence to 0 of BM(p̂Y ·X) implies, at least for a large enough sample size, that a much

smaller expected excess penalty is achieved for misclassification penalty than is achieved in

the case of squared error or logarithmic probability penalty.

3.4 Comparison of Expected Penalties

For an additional simple illustration of the implications of the large-sample properties

of the sample probability predictors under study, consider s = 2, and define a uniformly

distributed random variable W with range (1/4, 3/4) such that the conditional probability

that Y = 1 given that W = w is w. Let v be a positive integer, and let X be the largest

integer not greater than 2v(W − 1/4), so that pX(x) = v−1 for integers x from 0 to v − 1,

and

pY ·X(1|x) =
1

4
+

2x + 1

4v
.

Straightforward calculations show that, in the case of squared error, the condition

concentration of Y given W is

CY ·W = 2

∫ 3/4

1/4

2w(1− w)dw =
11

24
,
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the conditional concentration of Y given X is

CY ·X =
11

24
+

1

24v2
,

and the expected excess penalties BC(p̂Y ·X) and BC(p̂Y ·Xα) are well approximated by

vCY ·X/n. As n approaches ∞ and v/n approaches 0, the expected penalties IC(p̂Y ·X) and

IC(p̂Y ·Xα) are well approximated by(
11

24
+

1

24v2

)
(1 + v/n).

At this point, there is a tradeoff to consider. More categories v in the definition of X leads

to a smaller conditional dispersion CY ·X but a larger approximation for the estimated excess

penalties BC(p̂Y ·X) and BC(p̂Y ·Xα). For n large, the optimal situation has v approximately

equal to (3n/11)1/3, so that the expected penalties IC(p̂Y ·X) and IC(p̂Y ·Xα) are well

approximated by

CY ·W +
1

6

(
11

3n

)2/3

.

Note that for sufficiently large n, the expected penalties from use of probability predictors

from sample data becomes increasingly close to the expected penalty achieved through

prediction of Y by W under the condition that pY ·W is known. The difference in expected

penalties is of order n−2/3. As an illustration of results, consider n = 1, 000. In this case, v,

which must be an integer, may be taken as 6, and IC(p̂Y ·X) and IC(p̂Y ·Xα) exceed CY ·W by

about 0.0039.

In like manner, for the logarithmic penalty, the conditional entropy of Y given W is

HY ·W = −2

∫ 3/4

1/4

[w log(w) + (1− w) log(1− w)]dw

=
1

2
+ 2 log(2)− 9

8
log(3)

= 0.650,

and the conditional entropy HY ·X of Y given X is well approximated by

HY ·W +
1

48v2

∫ 3/4

1/4

[w(1− w)]−1dw = HY ·W +
1

24v2
log(3).

It follows that the expected penalty IH(p̂Y ·Xα)) is well approximated by

HY ·W +
1

24v2
log(3) +

v

2n
.
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To reduce expected penalty from use of p̂Y ·Xα, the optimal choice of v for large n has v

approximately equal to (4−1n log 3)1/3, so that IH(p̂Y ·Xα) is well approximated by

HY ·W +
2

3

(
log 3

4n2

)1/3

.

For sufficiently large n, the expected penalty from use of sample data becomes increasingly

close to the expected penalty achieved through prediction of Y by W under the condition

that pY ·W is known. As in the case of concentration, the difference in expected penalties is

of order n−2/3. For n = 1, 000, the optimal choice of v is 6, and the expected penalty for the

sample predictor exceeds the expected penalty for pY ·X by 0.0043. Thus results for squared

error and logarithmic penalty are quite similar.

The situation is very different for misclassification penalty. Here the conditional

misclassification rate MY ·W of Y given W is easily seen to be (1/2 + 1/4)/2 = 3/8, and the

conditional misclassification rate MY ·X of Y given X is 3/8 for v even and 3/8 + 1/(8v2)

for v odd. In terms of the expected penalty IM(p̂Y ·X) = IM(p̂Y ·Xα), the optimal choice of v

is 2. In this case, the expected penalty is very close to MY ·W + (1/4)ξ(2, 1|x), and ξ(2, 1|1)

is bounded above by 0.9841n. It follows that the expected excess misclassification penalty

is less than 10−7 if n = 1, 000, a figure drastically smaller than the corresponding values for

squared error penalty or logarithmic probability penalty.

4 Conclusions

The large-sample properties associated with squared error penalty, logarithmic

probability penalty, and misclassification penalty indicate that misclassification penalty

exhibits very different behavior than do the other penalties. One might think that the

asymptotic results imply a superiority of misclassification penalty on the grounds that, for

a sufficiently large sample size, if each conditional probability pY ·X(y|x) is positive, then the

expected excess penalty is smaller for misclassification penalty than for the other choices of

penalty functions. In reality, the apparent advantage of misclassification penalty reflects a

very serious flaw in the criterion. The misclassification rate is very insensitive to variations

in predicted probabilities unless two or more predicted probabilities are nearly the same.

For example, in the example of prediction of a dichotomous response, the predictor X for
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Table 2.

Joint Probabilities of Human and Machine Scores

Machine Human score

score 1 2 3 4 5 6 Total

1 0.0110 0.0120 0.0000 0.0000 0.0000 0.0000 0.0230

2 0.0100 0.0760 0.0760 0.0000 0.0000 0.0000 0.1620

3 0.0000 0.1000 0.1000 0.0290 0.0000 0.0000 0.2290

4 0.0000 0.0000 0.1740 0.1760 0.0000 0.0000 0.3500

5 0.0000 0.0000 0.0000 0.0800 0.0800 0.0170 0.1770

6 0.0000 0.0000 0.0000 0.0000 0.0270 0.0320 0.0590

Total 0.0210 0.1880 0.3500 0.2850 0.1070 0.0490 1.0000

v = 2 is as effective as the original variable W in terms of misclassification rate despite

the substantial variability of the conditional probability pY (y|w) as a function of w. On

the other hand, the differences CY ·X − CY ·W = 1/96 and HY ·X −HY ·W = 0.011 are fairly

substantial.

The example of essay scoring exhibits a similar issue. The same conditional

misclassification rate is achieved if Table 1 is modified to yield Table 2. Table 1 and Table 2

are quite different. Other measures reflect the change. The conditional concentration CY ·X

is changed from 0.6266 to 0.5457, and the conditional entropy HY ·X is changed from 1.1851

to 0.8873. The latter two measures reflect the decreased dispersion in Table 2 relative to

Table 1.

In practice, attempts to use misclassification penalty rather than more sensitive penalty

functions are likely to obscure actual improvements in prediction. For example, progress in

the machine scoring of essays can be expected to be obscured as long as criteria based on

misclassification rates are employed.
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